Auto-Demo提示技术:批处理提示的突破性创新 | 香港理工大学最新
Auto-Demo提示技术:批处理提示的突破性创新 | 香港理工大学最新在AI迅速发展的技术背景下,如何更高效地利用模型资源成为了一个关键问题。批处理提示(Batch Prompting)作为一种同时处理多个相似查询的技术,虽然在提高计算效率方面显示出巨大潜力,但同时也面临着性能下降的挑战。香港理工大学的研究团队提出的Auto-Demo提示技术,为这一问题带来了突破性的解决方案。
在AI迅速发展的技术背景下,如何更高效地利用模型资源成为了一个关键问题。批处理提示(Batch Prompting)作为一种同时处理多个相似查询的技术,虽然在提高计算效率方面显示出巨大潜力,但同时也面临着性能下降的挑战。香港理工大学的研究团队提出的Auto-Demo提示技术,为这一问题带来了突破性的解决方案。
只是一次让 AI 尝试改写《大闹天宫》的尝试,但核心的理念是,在当下,我们书写 prompt 的方式,以及我们如何与 AI 打交道的方式。
本文主要介绍prompt engineering的多种方法
每个神级 Prompt 都是一款产品,更代表了一种思想。
对于 LLM 从业者来说,让 LLM 落地应用并发挥作用需要手动构建并反复调试 Agentic Workflow,这无疑是个繁琐过程,一遍遍修改相似的代码,调试 prompt,手动执行测试并观察效果,并且换个 LLM 可能就会失效,有高昂的人力成本。许多公司甚至专职招聘 Prompt Engineer 来完成这一工作。
是李继刚贯彻 read in prompt out 的七个提示词。
大家对in-context learning(ICL)的能力可能已经很熟悉了,您通常会通过上下文示例就能快速让prompt适应新任务。然而,作为AI应用开发者,您是否思考过:为什么有时候精心设计的few-shot prompt会失效?为什么相同的prompt模式在不同场景下效果差异巨大?
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。
一个「汉语新解」的 prompt 突然爆火。 在 Claude 3.5 里使用这个 prompt 后,输入一个中文词语,AI 会生成一张这个词语的吐槽解释图。Prompt 本身的写法很神奇,使用了伪代码的写法,也让很多人意识到,原来 prompt 可以这么写。
学会与 AI 对话。 这两天,一段 Prompt 在网上火得一塌糊涂。 将Prompt 输入 Claude Sonnet 模型之后,它就能将一个寻常词汇剖析得淋漓尽致。